История открытия черных дыр. История черных дыр

История черных дыр

Алексей Левин

Научное мышлени е подчас конструирует объекты со столь парадоксальными свойствами, что даже самые проницательные ученые поначалу отказывают им в признании. Самый наглядный пример в истории новейшей физики - многолетнее отсутствие интереса к черным дырам, экстремальным состояниям гравитационного поля, предсказанным почти 90 лет назад. Долгое время их считали чисто теор етической абстракцией, и лишь в 1960-70-е годы уверовали в их реальность. Однако основное уравнение теор ии черных дыр было выведено свыше двухсот лет назад.

Озарение Джона Мичелла

Имя Джона Мичелла, физика, астронома и геолога, профессора Кембриджского университета и пастора англиканской церкви, совершенно незаслуженно затерялось среди звезд английской науки XVIII века. Мичелл заложил основы сейсмологии - науки о землетрясениях, выполнил превосходное исследование магнетизма и задолго до Кулона изобрел крутильные весы, которые использовал для гравиметрических измерений. В 1783 году он попытался объединить два великих творения Ньютона - механику и оптику. Ньютон считал свет потоком мельчайших частиц. Мичелл предположил, что световые корпускулы, как и обычная материя, подчиняются законам механики. Следствие из этой гипотез ы оказалось весьма нетривиальным - небесные тела могут превратиться в ловушки для света.

Как рассуждал Мичелл? Пушечное ядро, выстреленное с поверхности планеты, полностью преодолеет ее притяжение, лишь если его начальная скорость превысит значение, называемое теперь второй космической скоростью и скоростью убегания. Если гравитация планеты столь сильна, что скорость убегания превышает скорость света, выпущенные в зенит световые корпускулы не смогут уйти в бесконечность. Это же произойдет и с отраженным светом. Следовательно, для очень удаленного наблюдателя планета окажется невидимой. Мичелл вычислил критическое значение радиуса такой планеты R кр в зависимости от ее массы М, приведенной к массе нашего Солнца M s: R кр = 3 км x M/M s .

Джон Мичелл верил своим формулам и предполагал, что глубины космоса скрывают множество звезд, которые с Земли нельзя разглядеть ни в один телескоп. Позже к такому же выводу пришел великий французский математик, астроном и физик Пьер Симон Лаплас, включивший его и в первое (1796), и во второе (1799) издания своего «Изложения системы мира». А вот третье издание вышло в свет 1808 году, когда большинство физиков уже считало свет колебаниями эфира. Существование «невидимых» звезд противоречило волновой теор ии света, и Лаплас счел за лучшее о них просто не упоминать. В последующие времена эту идею считали курьезом, достойным изложения лишь в трудах по истории физики.

Модель Шварцшильда

В ноябре 1915 года Альберт Эйнштейн опубликовал теор ию гравитации, которую он назвал общей теор ией относительности (ОТО). Эта работа сразу же нашла благодарного читателя в лице его коллеги по Берлинской Академии наук Карла Шварцшильда. Именно Шварцшильд первым в мире применил ОТО для решения конкретной астрофизической задачи, расчета метрики пространства-времени вне и внутри невращающегося сферического тела (для конкретности будем называть его звездой).

Из вычислений Шварцшильда следует, что тяготение звезды не слишком искажает ньютоновскую структуру пространства и времени лишь в том случае, если ее радиус намного больше той самой величины, которую вычислил Джон Мичелл! Этот параметр сначала называли радиусом Шварцшильда, а сейчас именуют гравитационным радиусом. Согласно ОТО, тяготение не влияет на скорость света, но уменьшает частоту световых колебаний в той же пропорции, в которой замедляет время. Если радиус звезды в 4 раза превосходит гравитационный радиус, то поток времени на ее поверхности замедляется на 15%, а пространство приобретает ощутимую кривизну. При двукратном превышении оно искривляется сильнее, а время замедляет свой бег уже на 41%. При достижении гравитационного радиуса время на поверхности звезды полностью останавливается (все частоты зануляются, излучение замораживается, и звезда гаснет), однако кривизна пространства там все еще конечна. Вдали от светила геометрия по-прежнему остается евклидовой, да и время не меняет своей скорости.

Несмотря на то что значения гравитационного радиуса у Мичелла и Шварцшильда совпадают, сами модели не имеют ничего общего. У Мичелла пространство и время не изменяются, а свет замедляется. Звезда, размеры которой меньше ее гравитационного радиуса, продолжает светить, однако видна она только не слишком удаленному наблюдателю. У Шварцшильда же скорость света абсолютна, но структура пространства и времени зависит от тяготения. Провалившаяся под гравитационный радиус звезда исчезает для любого наблюдателя, где бы он ни находился (точнее, ее можно обнаружить по гравитационным эффектам, но отнюдь не по излучению).

От неверия к утверждению

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос - существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5–3 M s . Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теор етиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся - кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Там, за горизонтом

Черная дыра - это не вещество и не излучение. С некоторой долей образности можно сказать, что это самоподдерживающееся гравитационное поле, сконцентрированное в сильно искривленной области пространства-времени. Ее внешняя граница задается замкнутой поверхностью, горизонтом событий. Если звезда перед коллапсом не вращалась, эта поверхность оказывается правильной сферой, радиус которой совпадает с радиусом Шварцшильда.

Физический смысл горизонта очень нагляден. Световой сигнал, посланный с его внешней окрестности, может уйти на бесконечно далекую дистанцию. А вот сигналы, отправленные из внутренней области, не только не пересекут горизонта, но и неизбежно «провалятся» в сингулярность. Горизонт - это пространственная граница между событиями, которые могут стать известны земным (и любым иным) астрономам, и событиями, информация о которых ни при каком раскладе не выйдет наружу.

Как и положено «по Шварцшильду», вдали от горизонта притяжение дыры обратно пропорционально квадрату расстояния, поэтому для удаленного наблюдателя она проявляет себя как обычное тяжелое тело. Кроме массы, дыра наследует момент инерции коллапсировшей звезды и ее электрический заряд. А все остальные характеристики звезды-предшественницы (структура, состав, спектральный класс и т. п.) уходят в небытие.

Отправим к дыре зонд с радиостанцией, подающей сигнал раз в секунду по бортовому времени. Для удаленного наблюдателя по мере приближения зонда к горизонту интервалы времени между сигналами будут увеличиваться - в принципе, неограниченно. Как только корабль пересечет невидимый горизонт, он полностью замолчит для «наддырного» мира. Однако это исчезновение не окажется бесследным, поскольку зонд отдаст дыре свою массу, заряд и вращательный момент.

Чернодырное излучение

Все предыдущие модели были построены исключительно на основе ОТО. Однако наш мир управляется законами квантовой механики, которые не обходят вниманием и черные дыры. Эти законы не позволяют считать центральную сингулярность математической точкой. В квантовом контекст е ее поперечник задается длиной Планка-Уилера, приблизительно равной 10 –33 сантиметра. В этой области обычное пространство перестает существовать. Принято считать, что центр дыры нафарширован разнообразными топологическими структурами, которые появляются и погибают в соответствии с квантовыми вероятностными закономерностями. Свойства подобного пузырящегося квазипространства, которое Уилер назвал квантовой пеной, еще мало изучены.

Наличие квантовой сингулярности имеет прямое отношение к судьбе материальных тел, падающих вглубь черной дыры. При приближении к центру дыры любой объект, изготовленный из ныне известных материалов, будет раздавлен и разорван приливными силами. Однако даже если будущие инженеры и технологи создадут какие-то сверхпрочные сплавы и композиты с невиданными ныне свойствами, все они все равно обречены на исчезновение: ведь в зоне сингулярности нет ни привычного времени, ни привычного пространства.

Теперь рассмотрим в квантовомеханическую лупу горизонт дыры. Пустое пространство - физический вакуум - на самом деле отнюдь не пусто. Из-за квантовых флуктуаций различных полей в вакууме непрерывно рождается и погибает множество виртуальных частиц. Поскольку тяготение около горизонта весьма велико, его флуктуации создают чрезвычайно сильные гравитационные всплески. При разгоне в таких полях новорожденные «виртуалы» приобретают дополнительную энерги ю и подчас становятся нормальными долгоживущими частицами.

Виртуальные частицы всегда рождаются парами, которые движутся в противоположных направлениях (этого требует закон сохранения импульса). Если гравитационная флуктуация извлечет из вакуума пару частиц, может случиться так, что одна из них материализуется снаружи горизонта, а вторая (античастица первой) - внутри. «Внутренняя» частица провалится в дыру, а вот «внешняя» при благоприятных условиях может уйти. В результате дыра превращается в источник излучения и поэтому теряет энерги ю и, следовательно, массу. Поэтому черные дыры в принципе не стабильны.

Этот феномен называется эффектом Хокинга, в честь замечательного английского физика-теор етика, который его открыл в середине 1970-х годов. Стивен Хокинг, в частности, доказал, что горизонт черной дыры излучает фотоны точно так же, как и абсолютно черное тело, нагретое до температуры T = 0,5 x 10 –7 x M s /M. Отсюда следует, что по мере похудания дыры ее температура возрастает, а «испарение», естественно, усиливается. Этот процесс чрезвычайно медленный, и время жизни дыры массы M составляет около 10 65 x (M/M s) 3 лет. Когда ее размер становится равным длине Планка-Уилера, дыра теряет стабильность и взрывается, выделяя ту же энерги ю, что и одновременный взрыв миллиона десятимегатонных водородных бомб. Любопытно, что масса дыры в момент ее исчезновения все еще довольно велика, 22 микрограмма. Согласно некоторым моделям, дыра не исчезает бесследно, а оставляет после себя стабильный реликт такой же массы, так называемый максимон.

Максимон родился 40 лет назад - как термин и как физическая идея. В 1965 году академик М. А. Марков предположил, что существует верхняя граница массы элементарных частиц. Он предложил считать этим предельным значением величину размерности массы, которую можно скомбинировать из трех фундаментальных физических констант - постоянной Планка h, скорости света C и гравитационной постоянной G (для любителей подробностей: для этого надо перемножить h и C, разделить результат на G и извлечь квадратный корень). Это те самые 22 микрограмма, о которых говорится в статье, эту величину называют планковской массой. Из тех же констант можно сконструировать величину с размерностью длины (выйдет длина Планка-Уилера, 10 –33 см) и с размерностью времени (10 –43 сек).
Марков пошел в своих рассуждениях и дальше. Согласно его гипотез е, испарение черной дыры приводит к образованию «сухого остатка» - максимона. Марков назвал такие структуры элементарными черными дырами. Насколько эта теор ия отвечает реальности, пока что вопрос открытый. Во всяком случае, аналоги марковских максимонов возрождены в некоторых моделях черных дыр, выполненных на базе теор ии суперструн.

Глубины космоса

Черные дыры не запрещены законами физики, но существуют ли они в природе? Совершенно строгие доказательства наличия в космосе хоть одного подобного объекта пока не найдены. Однако весьма вероятно, что в некоторых двойных системах источниками рентгеновского излучения являются черные дыры звездного происхождения. Это излучение должно возникать вследствие отсасывания атмосферы обычной звезды гравитационным полем дыры-соседки. Газ во время движения к горизонту событий сильно нагревается и испускает рентгеновские кванты. Не меньше двух десятков рентгеновских источников сейчас считаются подходящими кандидатами на роль черных дыр. Более того, данные звездной статистики позволяют предположить, что только в нашей Галактике существует около десяти миллионов дыр звездного происхождения.

Черные дыры могут формироваться и в процессе гравитационного сгущения вещества в галактических ядрах. Так возникают исполинские дыры с массой в миллионы и миллиарды солнечных, которые, по всей вероятности, имеются во многих галактиках. Судя по всему, в закрытом пылевыми облаками центре Млечного Пути прячется дыра с массой 3-4 миллиона масс Солнца.

Стивен Хокинг пришел к выводу, что черные дыры произвольной массы могли рождаться и сразу после Большого Взрыва, давшего начало нашей Вселенной. Первичные дыры массой до миллиарда тонн уже испарились, но более тяжелые могут и сейчас скрываться в глубинах космоса и в свой срок устроивать космический фейерверк в виде мощнейших вспышек гамма-излучения. Однако до сих пор такие взрывы ни разу не наблюдались.

Фабрика черных дыр

А нельзя ли разогнать частицы в ускорителе до столь высокой энерги и, чтобы их столкновение породило черную дыру? На первый взгляд, эта идея просто безумна - взрыв дыры уничтожит все живое на Земле. К тому же она технически неосуществима. Если минимальная масса дыры действительно равна 22 микрограммам, то в энергетических единицах это 10 28 электронвольт. Этот порог на 15 порядков превышает возможности самого мощного в мире ускорителя, Большого адронного коллайдера (БАК), который будет запущен в ЦЕРНе в 2007 году.

src="black_holes1/aerial-view-lhc.jpg" width="275" border="0">

Однако не исключено, что стандартная оценка минимальной массы дыры значительно завышена. Во всяком случае, так утверждают физики, разрабатывающие теор ию суперструн, которая включает в себя и квантовую теор ию гравитации (правда, далеко не завершенную). Согласно этой теор ии, пространство имеет не три измерения, а не менее девяти. Мы не замечаем дополнительных измерений, поскольку они закольцованы в столь малых масштабах, что наши приборы их не воспринимают. Однако гравитация вездесуща, она проникает и в скрытые измерения. В трехмерном пространстве сила тяготения обратно пропорциональна квадрату расстояния, а в девятимерном - восьмой степени. Поэтому в многомерном мире напряженность гравитационного поля при уменьшении дистанции возрастает намного быстрее, нежели в трехмерном. В этом случае планковская длина многократно увеличивается, а минимальная масса дыры резко падает.

Теория струн предсказывает, что в девятимерном пространстве может родиться черная дыра с массой всего лишь в 10 –20 г. Примерно такова же и расчетная релятиви стская масса протонов, разогнанных в церновском суперускорителе. Согласно наиболее оптимист ическому сценарию, он сможет ежесекундно производить по одной дыре, которая проживет около 10 –26 секунд. В процессе ее испарения будут рождаться всевозможные элементарные частицы, которые будет несложно зарегистрировать. Исчезновение дыры приведет к выделению энерги и, которой не хватит даже для того, чтобы нагреть одним микрограмм воды на тысячную градуса. Поэтому есть надежда, что БАК превратится в фабрику безвредных черных дыр. Если эти модели верны, то такие дыры смогут регистрировать и орбитальные детект оры космических лучей нового поколения.

Все вышеописанное относится к неподвижным черным дырам. Между тем, существуют и вращающиеся дыры, обладающие букетом интереснейших свойств. Результаты теор етического анализа чернодырного излучения привели также к серьезному переосмысл ению понятия энтропии, которое также заслуживает отдельного разговора.

Космические супермаховики

Статичные электронейтральные черные дыры, о которых мы рассказывали, совершенно не типичны для реального мира. Коллапсирующие звезды, как правило, вращаются и к тому же могут обладать электрическим зарядом.

Теорема о лысине

Гигантские дыры в галактических ядрах, по всей вероятности, образуются из первичных центров гравитационной конденсации - единственной «послезвездной» дыры или же нескольких дыр, слившихся в результате столкновений. Такие дыры-зародыши заглатывают расположенные поблизости звёзды и межзвездный газ и тем многократно увеличивают свою массу. Падающее под горизонт вещество опять-таки обладает как электрическим зарядом (космический газ и пылевые частицы легко ионизируются), так и вращательным моментом (падение происходит с закруткой, по спирали). В любом физическом процессе момент инерции и заряд сохраняются, и поэтому естественно предположить, что формирование черных дыр не является исключением.

Но справедливо и еще более сильное утверждение, частный случай которого был сформулирован в первой части статьи (см. А. Левин, Удивительная история черных дыр , «Популярная механика» №11, 2005). Какими бы ни были предки макроскопической черной дыры, она получает от них лишь массу, момент вращения и электрический заряд. По словам Джона Уилера, «черная дыра не имеет волос». Правильнее было бы сказать, что с горизонта любой дыры свисают не больше трех «волосинок», что и было доказано объединенными усилиями нескольких физиков-теор етиков в 1970-х. Правда, в дыре обязан сохраняться и магнитный заряд, гипотетические носители которого, магнитные монополи, были предсказаны Полем Дираком в 1931 году. Однако эти частицы еще не обнаружены, и о четвертой «волосинке» говорить рановато. В принципе, могут существовать и дополнительные «волосы», связанные с квантовыми полями, однако в макроскопической дыре они совершенно незаметны.

И все-таки они вертятся

Если статичную звезду подзарядить, метрика пространства-времени изменится, но горизонт событий по-прежнему останется сферическим. Однако звездные и галактические черные дыры по ряду причин не могут нести большой заряд, поэтому с точки зрения астрофизики этот случай не слишком интересен. А вот вращение дыры влечет за собой более серьезные последствия. Во-первых, изменяется форма горизонта. Центробежные силы сжимают его по оси вращения и растягивают в плоскости экватора, так что сфера преобразуется в нечто подобное эллипсоиду. В сущности, с горизонтом происходит то же самое, что с любым вращающимся телом, в частности, с нашей планетой - ведь экваториальный радиус Земли на 21,5 км длиннее полярного. Во-вторых, вращение уменьшает линейные размеры горизонта. Вспомним, что горизонт - это граница раздела между событиями, которые могут или не могут посылать сигналы к удаленным мирам. Если тяготение дыры пленяет световые кванты, то центробежные силы, напротив, способствуют их уходу в открытый космос. Поэтому горизонт вращающейся дыры должен располагаться ближе к ее центру, нежели горизонт статичной звезды с такой же массой.

Но и это не всё. Дыра в своем вращении увлекает за собой окружающее пространство. В непосредственной близости от дыры увлечение полное, на периферии оно постепенно слабеет. Поэтому горизонт дыры погружен в особую область пространства - эргосферу. Граница эргосферы прикасается к горизонту у полюсов и дальше всего отходит от него в плоскости экватора. На этой поверхности скорость увлечения пространства равна световой; внутри нее она больше скорости света, а снаружи - меньше. Поэтому любое материальное тело, будь то газовая молекула, частица космической пыли или зонд-разведчик, при попадании в эргосферу непременно начинает вращаться вокруг дыры, причем в том же направлении, что и она сама.

Звездные генераторы

Наличие эргосферы, в принципе, позволяет использовать дыру в качестве источника энерги и. Пусть некий объект проникает в эргосферу и распадается там на два осколка. Может оказаться, что один из них провалится под горизонт, а другой покинет эргосферу, причем его кинетическая энерги я превысит начальную энерги ю целого тела! Эргосфера обладает также способностью усиливать электромагнитное излучение, которое падает на нее и вновь рассеивается в пространство (это явление называется сверхрадиацией).

Впрочем, закон сохранения энерги и непоколебим - вечных двигателей не существует. Когда дыра подпитывает энерги ей частицы или излучение, ее собственная энерги я вращения уменьшается. Космический супермаховик постепенно сбавляет обороты, и в конце концов может даже остановиться. Подсчитано, что таким образом можно перевести в энерги ю до 29% массы дыры. Эффективней этого процесса - лишь аннигиляция вещества и антивещества, поскольку в этом случае масса полностью превращается в излучение. А вот солнечное термоядерное топливо выгорает с много меньшим КПД - порядка 0,6%.

Следовательно, быстро вращающаяся черная дыра - едва ли не идеальный генератор энерги и для космических суперцивилизаций (если, конечно, таковые существуют). Во всяком случае, природа использует этот ресурс с незапамятных времен. Квазары, самые мощные космические «радиостанции» (источники электромагнитных волн), питаются энерги ей исполинских вращающихся дыр, расположенных в ядрах галактик. Эту гипотез у выдвинули Эдвин Салпетер и Яков Зельдович еще в 1964 году, и с тех пор она стала общепринятой. Приближающееся к дыре вещество образует кольцеобразную структуру, так называемый аккреционный диск. Так как пространство поблизости от дыры сильно закручено ее вращением, внутренняя зона диска удерживается в экваториальной плоскости и медленно оседает к горизонту событий. Газ в этой зоне сильно нагревается внутренним трением и генерирует инфракрасное, световое, ультрафиолетовое и рентгеновское излучение, а порой даже и гамма-кванты. Квазары испускают также нетепловое радиоизлучение, которое в основном обусловлено синхротронным эффектом.

Очень поверхностная энтропия

Теорема о лысых дырах скрывает весьма коварный подводный камень. Коллапсирующая звезда представляет собой сгусток сверхгорячего газа, сжимаемого силами тяготения. Чем выше плотность и температура звездной плазмы, тем меньше в ней порядка и больше хаоса. Степень хаотичности выражается вполне конкретной физической величиной - энтропией. С течением времени энтропия любого изолированного объекта возрастает - такова суть второго начала термодинамики. Энтропия звезды перед началом коллапса непомерно велика, а энтропия дыры вроде бы крайне мала, поскольку для однозначного описания дыры нужны всего три параметра. Неужели в ходе гравитационного коллапса нарушается второй закон термодинамики?

Нельзя ли допустить, что при превращении звезды в сверхновую ее энтропия уносится вместе со сброшенной оболочкой? Увы, нет. Во-первых, масса оболочки не идет ни в какое сравнение с массой звезды, посему потеря энтропии будет невелика. Во-вторых, несложно придумать еще более убедительное мысленное «опровержение» второго закона термодинамики. Пусть в зону притяжения уже готовой дыры попало тело ненулевой температуры, обладающее какой-то энтропией. Провалившись под горизонт событий, оно исчезнет вместе со своими запасами энтропии, а энтропия дыры, по всей видимости, нисколько не увеличится. Появляется искушение утверждать, что энтропия пришельца не исчезает, а передается внутренности дыры, но это лишь словесная уловка. Законы физики выполняются в мире, доступном для нас и наших приборов, а область под горизонтом событий для любого внешнего наблюдателя - terra incognita.

Этот парадокс разрешил аспирант Уилера Джейкоб Бекенстейн. У термодинамики есть очень мощный интеллектуальный ресурс - теор етическое исследование идеальных тепловых машин. Бекенстейн придумал мысленное устройство, которое трансформирует тепло в полезную работу, используя черную дыру в качестве нагревателя. При помощи этой модели он вычислил энтропию черной дыры, которая оказалась пропорциональна площади горизонта событий . Эта площадь пропорциональна квадрату радиуса дыры, который, напомним, пропорционален ее массе. При захвате любого внешнего объекта масса дыры возрастает, радиус удлиняется, увеличивается площадь горизонта и, соответственно, растет энтропия. Расчеты показали, что энтропия дыры, заглотнувшей чужеродный объект, превышает суммарную энтропию этого предмета и дыры до их встречи. Аналогично, энтропия коллапсирующей звезды на много порядков меньше энтропии дыры-наследницы. Фактически, из рассуждений Бекенстейна следует, что поверхность дыры обладает ненулевой температурой и поэтому просто обязана излучать тепловые фотоны (а при достаточном нагреве и прочие частицы). Однако так далеко Бекенстейн пойти не решился (этот шаг сделал Стивен Хокинг).

К чему же мы пришли? Размышлени я о черных дырах не только оставляют второе начало термодинамики незыблемым, но и позволяют обогатить понятие энтропии. Энтропия обычного физического тела более или менее пропорциональна его объему, а энтропия дыры - поверхности горизонта. Можно строго доказать, что она больше энтропии любого материального объекта с такими же линейными размерами. Это означает, что максимальная энтропия замкнутого участка пространства определяется исключительно площадью его внешней границы! Как видим, теор етический анализ свойств черных дыр позволяет сделать очень глубокие выводы общефизического характера.

Глядя в глубины Вселенной

Как осуществляется поиск черных дыр в глубинах космоса? Этот вопрос «Популярная механика» задала известному астрофизику - профессору Гарвардского университета Рамешу Нарайану.

«Открытие черных дыр следует считать одним из крупнейших достижений современной астрономии и астрофизики. В последние десятилетия в космосе были идентифи цированы тысячи источников рентгеновского излучения, каждый из которых состоит из нормальной звезды и несветящегося объекта очень малого размера, окруженного аккреционным диском. Темные тела, массы которых составляют от полутора до трех солнечных масс, наверняка являются нейтронными звездами. Однако среди этих невидимых объектов есть как минимум два десятка практически стопроцентных кандидатов на роль черной дыры. Помимо этого, ученые пришли к единому мнению, что в галактических ядрах скрываются по крайней мере две исполинских черных дыры. Одна из них находится в центре нашей Галактики; согласно прошлогодней публикации астрономов из США и Германии, ее масса составляет 3,7 миллиона масс Солнца (M s). Несколько лет назад мои коллеги по Гарвардско-Смитсоновскому астрофизическому центру Джеймс Моран и Линкольн Гринхилл внесли основной вклад во взвешивание дыры в центре сейфертовской галактики NGC 4258, которая потянула на 35 миллионов M s . По всей вероятности, в ядрах многих галактик имеются дыры, обладающие массой от миллиона до нескольких миллиардов M s .

Пока нет возможности зафиксировать с Земли действительно уникальную подпись черной дыры - наличие горизонта событий. Однако мы уже умеем убеждаться в его отсутствии. Радиус нейтронной звезды составляет 10 километров; таков же по порядку величины и радиус дыр, родившихся в результате звездного коллапса. Однако нейтронная звезда имеет твердую поверхность, а дыра таковой не обладает. Падение вещества на поверхность нейтронной звезды влечет за собой термоядерные взрывы, которые порождают периодические рентгеновские вспышки секундной длительности. А когда газ достигает горизонта черной дыры, он уходит под него и не проявляет себя никаким излучением. Поэтому отсутствие коротких рентгеновских вспышек - мощное подтверждение дырочной сущности объекта. Все два десятка двойных систем, предположительно содержащих черные дыры, таких вспышек не испускают.

Нельзя не признать, что сейчас мы вынуждены довольствоваться негативными доказательствами существования черных дыр. Объекты, которые мы объявляем дырами, не могут быть ничем иным с точки зрения общепринятых теор етических моделей. Выражаясь иначе, мы их полагаем дырами исключительно потому, что не можем разумно счесть ничем иным. Надеюсь, что следующим поколениям астрономов повезет несколько больше».

К словам профессора Нарайана можно добавить, что астрономы уже довольно давно верили в реальность существования черных дыр. Исторически первым надежным кандидатом на эту должность стал темный спутник очень яркого голубого сверхгиганта HDE 226868, удаленного от нас на 6500 световых лет. Он был обнаружен в начале 1970-х годов в рентгеновской двойной системе Лебедь Х-1 . По последним данным, его масса составляет около 20 M s . Стоит отметить, что 20 сентября этого года были опубликованы данные, которые практически полностью рассеяли сомнения в реальности еще одной дыры галактических масштабов, о существовании которой астрономы впервые заподозрили 17 лет назад. Она находится в центре галактики М31, более известной как Туманность Андромеды. Галактика М31 - очень старая, ей примерно 12 миллиардов лет. Дыра тоже немаленькая - 140 миллионов солнечных масс. К осени 2005 года астрономы и астрофизики окончательно уверились в существовании трех сверхмассивных черных дыр и еще пары десятков их более скромных товарок.

Вердикт теор етиков

«Популярной механике» удалось также поговорить с двумя авторитетнейшими специалистами по теор ии тяготения, которые посвятили десятки лет исследованиям в области черных дыр. Мы попросили их перечислить наиболее важные достижения в этой области. Вот что рассказал нам профессор теор етической физики Калифорнийского технологического института Кип Торн:

«Если говорить о макроскопических черных дырах, которые хорошо описываются уравнениями ОТО, то в области их теор ии основные результаты были получены еще в 60-80-е годы XX века. Что касается недавних работ, то самые интересные из них позволили лучше понять процессы, происходящие внутри черной дыры по мере ее старения. В последние годы немалое внимание уделяется моделям черных дыр в многомерных пространствах, которые естественно появляются в теор ии струн. Но эти исследования относятся уже не к классическим, а к квантовым дырам, пока еще не обнаруженным. Главный же итог последних лет - очень убедительные астрофизические подтверждения реальности существования дыр с массой в несколько солнечных масс, а также сверхмассивных дыр в центрах галактик. Сегодня уже не приходится сомневаться, что эти дыры действительно существуют и что мы хорошо понимаем процессы их формирования».

На этот же вопрос ответил и ученик академика Маркова, профессор университета канадской провинции Альберта Валерий Фролов:

«Прежде всего я бы назвал открытие черной дыры в центре нашей Галактики. Очень интересны и теор етические исследования дыр в пространствах с дополнительными измерениями, из которых вытекает возможность рождения минидыр в экспериментах на ускорителях-коллайдерах и в процессах взаимодействия космических лучей с земной материей. Недавно Стивен Хокинг разослал препринт работы, из которой следует, что тепловое излучение черной дыры полностью возвращает во внешний мир информацию о состоянии объектов, провалившихся под ее горизонт. Ранее он полагал, что эта информация необратимо исчезает, но теперь пришел к противоположному выводу. Тем не менее, необходимо подчеркнуть, что окончательно эту задачу можно решить лишь на основе квантовой теор ии гравитации, которая пока еще не построена».

Работа Хокинга заслуживает отдельного комментария. Из общих принципов квантовой механики следует, что никакая информация не исчезает бесследно, но разве что переходит в менее «читаемую» форму. Однако черные дыры необратимо уничтожают материю и, по-видимому, так же жестко расправляются и с информацией. В 1976 году Хокинг опубликовал статью, где этот вывод был подкреплен математическим аппаратом. Некоторые теор етики согласились с ним, некоторые - нет; в частности, сторонники теор ии струн были уверены, что информация неразрушима. Прошлым летом на конференции в Дублине Хокинг заявил, что информация всё же сохраняется и уходит с поверхности испаряющейся дыры вместе с тепловым излучением. На этой встрече Хокинг представил лишь схему своих новых вычислений, пообещав со временем опубликовать их полностью. И вот теперь, как рассказал Валерий Фролов, эта работа стала доступна в виде препринта.

Напоследок мы попросили профессора Фролова объяснить, почему он считает черные дыры одним из самых фантастических изобретений человеческого интеллекта.

«Астрономы долгое время открывали объекты, для понимания которых не требовалось существенно новых физических идей. Это относится не только к планетам, звездам и галактикам, но и к таким экзотическим телам, как белые карлики и нейтронные звезды. А вот черная дыра - это нечто совершенно иное, это прорыв в неизвестное. Кто-то сказал, что ее внутренности - наилучшее место для размещения преисподней. Исследование дыр, особенно сингулярностей, просто вынуждает использовать такие нестандартные понятия и модели, которые до недавнего времени в физике практически не обсуждались - например, квантовую гравитацию и теор ию струн. Здесь возникает множество проблем, которые для физики непривычны, даже болезненны, но, как сейчас понятно, абсолютно реальны. Поэтому изучение дыр постоянно требует принципиально новых теор етических подходов, в том числе и таких, которые находятся на грани наших знаний о физическом мире».

10 апреля группа астрофизиков из проекта Event Horizon Telescope обнародовала первый в истории снимок черной дыры. Эти гигантские, но невидимые космические объекты до сих пор остаются одними из самых загадочных и интригующих в нашей Вселенной.

Читайте ниже

Что такое черная дыра?

Черная дыра — объект (область в пространстве-времени), чья гравитация настолько велика, что он притягивает все известные объекты, включая те, которые движутся со скоростью света. Кванты самого света также не могут покинуть эту область, поэтому черная дыра невидима. Наблюдать можно только за электромагнитными волнами, радиацией и искажениями пространства вокруг черной дыры. На , опубликованном Event Horizon Telescope, изображен горизонт событий черной дыры — граница области со сверхсильной гравитацией, обрамленная аккреционным диском — светящейся материей, которую «засасывает» дыра.

Термин «черная дыра» появился в середине XX века, его ввел американский физик-теоретик Джон Арчибальд Уилер. Он впервые употребил этот термин на научной конференции в 1967 году.

Однако предположения о существовании объектов настолько массивных, что силу их притяжения не может преодолеть даже свет, выдвигались еще в XVIII веке. Современная теория черных дыр начала формироваться в рамках общей теории относительности. Интересно, что сам Альберт Эйнштейн в существование черных дыр не верил.

Откуда берутся черные дыры?

Ученые полагают, что черные дыры бывают разными по происхождению. Черной дырой в конце жизни становятся массивные звезды: за миллиарды лет в них меняется состав газов, температура, что приводит к нарушению равновесия между гравитацией звезды и давлением раскаленных газов. Тогда происходит коллапс звезды: ее объем уменьшается, но, поскольку масса не меняется, растет плотность. Типичная черная дыра звездной массы имеет радиус 30 километров и плотность вещества более 200 млн тонн на кубический сантиметр. Для сравнения: чтобы Земля стала черной дырой, ее радиус должен составить 9 миллиметров.

Существует еще один вид черных дыр — сверхмассивные черные дыры, которые образуют ядра большинства галактик. Их масса в миллиард раз больше массы звездных черных дыр. Происхождение сверхмассивных черных дыр неизвестно, есть гипотеза, что когда-то они были черными дырами звездной массы, которые росли, поглощая другие звезды.

Есть также спорная идея о существовании первичных черных дыр, которые могли появиться от сжатия любой массы в начале существования Вселенной. Кроме того, существует предположение, что очень маленькие черные дыры с массой, близкой массе элементарных частиц, образуются на Большом адронном коллайдере. Однако подтверждения этой версии пока нет.

Черная дыра поглотит нашу галактику?

В центре галактики Млечный Путь есть черная дыра — Стрелец А*. Ее масса в четыре миллиона раз больше массы Солнца, а размер — 25 миллионов километров — примерно равен диаметру 18 солнц. Подобные масштабы заставляют некоторых задаваться вопросом: а не угрожает ли черная дыра всей нашей галактике? Основания для таких предположений есть не только у фантастов: несколько лет назад ученые сообщили о галактике W2246–0526, которая находится в 12,5 млрд световых лет от нашей планеты. Согласно описанию астрономов, находящаяся в центре W2246–0526 свермассивная черная дыра постепенно разрывает ее на части, а возникающее в результате этого процесса излучение разгоняет во все стороны раскаленные гигантские облака газа. Разрываемая черной дырой галактика светится ярче, чем 300 триллионов солнц.

Однако нашей родной галактике ничего подобного не угрожает (по крайней мере в краткосрочной перспективе). Большинство объектов Млечного Пути, включая Солнечную систему, находится слишком далеко от черной дыры, чтобы ощутить ее притяжение. Кроме того, «наша» черная дыра не втягивает весь материал, как пылесос, а выступает лишь гравитационном якорем для группы звезд, находящихся на орбите вокруг нее — как Солнце для планет.

Впрочем, даже если мы когда-нибудь и попадем за горизонт событий черной дыры то, скорее всего, даже не заметим этого.

Что будет, если «упасть» в черную дыру?

Объект, притянутый черной дырой, скорее всего, не сможет оттуда вернуться. Чтобы преодолеть гравитацию черной дыры, нужно развить скорость выше скорости света, но человечество пока не знает, как это можно сделать.

Гравитационное поле вокруг черной дыры очень сильно и неоднородно, поэтому все объекты рядом с ней меняют форму и структуру. Та сторона предмета, которая находится ближе к горизонту событий, притягивается с большей силой и падает с большим ускорением, поэтому весь предмет растягивается, становясь похожим на макаронину. Это явление описал в своей книге «Краткая история времени» знаменитый физик-теоретик Стивен Хокинг. Еще до Хокинга астрофизики назвали это явление спагеттификацией.

Если описывать спагеттификацию с точки зрения космонавта, который подлетел к черной дыре ногами вперед, то гравитационное поле будет затягивать его ноги, а затем растянет и разорвет тело, превратив его в поток субатомных частиц.

Со стороны увидеть падение в черную дыру невозможно, так как она поглощает свет. Сторонний наблюдатель увидит лишь, что приближающийся к черной дыре объект постепенно замедляется, а затем и вовсе останавливается. После этого силуэт объекта будет становиться все более размытым, обретать красный цвет, и наконец просто исчезнет навсегда.

По предположению Стивена Хокинга, все объекты, которые притягивает черная дыра, остаются в горизонте событий. Из теории относительности следует, что вблизи черной дыры время замедляется вплоть до остановки, поэтому для того, кто падает, самого падения в черную дыру может никогда не произойти.

А что внутри?

Достоверного ответа на этот вопрос по понятным причинам сейчас не существует. Впрочем, ученые сходятся во мнении, что внутри черной дыры привычные нам законы физики уже не действуют. Согласно одной из самых захватывающих и экзотических гипотез, пространственно-временной континуум вокруг черной дыры искажается настолько, что в самой реальности образуется прореха, которая может быть порталом в другую вселенную — или так называемой кротовой норой.

Черные дыры: самые таинственные объекты Вселенной

Чёрная дыраа - область пространства-времени, гравитационно притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Граница этой области называется горизонтом событий, а её характерный размер - гравитационным радиусом.

Впервые идея о «черной дыре» возникла в 1916 году, когда физик Шварцшильд решал уравнения Эйнштейна. Математика привела к странному выводу о существовании компактных объектов, вокруг которых возникает горизонт событий с интересными свойствами. Но самого термина «черная дыра» тогда еще не было. Горизонт событий – это область пространства, окружающая черную дыру, попав в которую вещество уже никогда не сможет покинуть эту область и провалится в черную дыру. Свет еще может преодолеть огромную силу гравитации, послать последние потоки от пропадающего вещества, но только в течение небольшого промежутка времени, пока падающее вещество не попадет в так называемую зону сингулярности, за которую уже не Карл Шварцшильд, немецкий астроном, один из основоположников теоретической астрофизики

В 1930-х годах Чедвик открыл нейтрон. Вскоре была высказана гипотеза о существовании нейтринных звезд, которые при больших массах оказываются неустойчивыми и сжимаются до состояния коллапса. Термина "черная дыра" все еще не было. И только в конце 1960-х американец Джон Уилер произнес "черная дыра". Это точка в пространстве, где под воздействием гравитационных сил исчезают материя и энергия. В этом месте гравитационные силы настолько велики, что все оказывающееся поблизости буквально засасывается внутрь. Даже световые лучи не могут вырваться оттуда, поэтому черная дыра абсолютно невидима. Джон Уилер, американский физик.

Обнаружить "черную дыру" можно по специфическому рентгеновскому излучению, которое образуется, когда она засасывает в себя вещество. В 1970-х годах американский спутник "Ухуру" (на одном из африканских диалектов - "Свобода") зафиксировал специфическое рентгеновское излучение. С тех пор "черная дыра" существует не только в расчетах. Именно за эти исследования Нобелевскую премию 2002 года получил Риккардо Джаккони. Риккардо Джаккони, американский физик итальянского происхождения, лауреат Нобелевской премии по физике в 2002 г. «за создание рентгеновской астрономии и изобретение рентгеновского телескопа»

На данный момент учёными обнаружено около тысячи объектов во Вселенной, которые причисляются к чёрным дырам. Всего же, предполагают учёные, существуют десятки миллионов таких объектов. В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с гравитационным радиусом, который задаётся формулой = , где G - гравитационная постоянная, M- масса объекта, c - Сверхмассивные чёрные дыры скорость света. Разросшиеся очень большие чёрные дыры, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики - Стрелец A*, являющаяся ближайшей к Солнцу сверхмассивной чёрной дырой. В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями. Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как Радиогалактика Живописе ц A, виден джет рентгеновского излучения (синий) длиной 300 тыс. световых лет, исходящий из

Обнаружение сверхмассивных чёрных дыр Наиболее надёжными считаются свидетельства о существовании сверхмассивных чёрных дыр в центральных областях галактик. Сегодня разрешающая способность телескопов недостаточна для того, чтобы различать области пространства размером порядка гравитационного радиуса чёрной дыры. Существует множество способов определить массу и ориентировочные размеры сверхмассивного тела, однако большинство из них основано на измерении характеристик орбит вращающихся вокруг них объектов (звёзд, радиоисточников, газовых дисков). В простейшем и достаточно часто встречающемся случае обращение происходит по кеплеровским орбитам, о чём говорит пропорциональность скорости вращения спутника квадратному корню из большой полуоси орбиты: . В этом случае масса центрального тела находится по известной формуле.

По недавнему заявлению астрономов из Университета Огайо, необычное двойное ядро в галактике Андромеды объясняется скоплением звезд, вращающихся по эллиптическим орбитам вокруг какого-то массивного объекта, скорее всего, черной дыры. Такие выводы были сделаны на основе данных, полученных с помощью космического телескопа Hubble. Двойное ядро Андромеды было впервые обнаружено в 70-х годах, но только в середине 90-х была выдвинута теория черных дыр.

Идея о том, что в ядрах галактик существуют черные дыры - не нова.

Есть даже все основания полагать, что Млечный путь - галактика к которой принадлежит Земля - имеет в своем ядре большую черную дыру, масса которой в 3 млн раз больше массы Солнца. Однако исследовать ядро галактики Андромеда, которая находится на расстоянии 2 млн световых лет он нас, легче, чем ядро нашей галактики, до которого свет идет всего лишь 30 тыс. лет - за деревьями не видно леса.

Ученые моделируют столкновения черных дыр

Применение численного моделирования на суперкомпьютерах для выяснения природы и поведения черных дыр, исследования гравитационных волн.

Впервые ученые из института гравитационной физики (Max-Planck-Institut fur Gravitationsphysik), также известного как "институт Альберта Эйнштейна" и расположенного в Гольме, пригороде Потсдама (Германия), промоделировали слияние двух черных дыр. Для запланированного выявления гравитационных волн, испускаемых двумя сливающими черными дырами, необходимо провести полное трехмерное моделирование на суперкомпьютерах.

Плотность черных дыр так велика, что они совершенно не отражают и не излучают света - именно поэтому их так нелегко обнаружить. Однако через несколько лет ученые надеются на существенный сдвиг в этой области.

Гравитационные волны, которыми буквально заполнено космическое пространство, в начале следующего столетия могут быть обнаружены с помощью новых средств.

Ученые во главе с профессором Эдом Зейделем (Dr. Ed Seidel) готовят для подобных исследований численное моделирование, которое станет для наблюдателей надежным способом обнаружения волн, производимых черными дырами. "Столкновения черных дыр - один из главных источников возникновения гравитационных волн" - сказал профессор Зейдель, проводивший в последние годы успешные исследования в моделировании гравитационных волн, появляющихся при разрушении черных дыр при прямых столкновениях.

Вместе с тем, взаимодействие двух вращающихся по спирали черных дыр и их слияние более распространены, чем прямое столкновение, и имеют большее значение в астрономии. Такие касательные столкновения были впервые просчитаны Берндом Бругманом, работающим в институте Альберта Эйнштейна.

Однако в то время из-за нехватки вычислительных мощностей, он не смог рассчитать такие прнципиально важные детали, как точный след испускаемых гравитационных волн, содержащий важную информацию о поведении черных дыр при столкновении. Бругман опубликовал последние результаты в журнале "International Journal of Modern Physics".

В своих первых вычислениях, Бругман использовал установленный в институте сервер Origin 2000. Он включает 32 отдельных процессора, работающих параллельно с суммарной пиковой производительностью, равной 3 миллиардам операций в секунду. А в июне этого года международная группа, состоящая их Бругмана, Зейделя и других ученых уже работала со значительно более мощным 256-процессорным суперкомпьютером Origin 2000 в Национальном центре суперкомпьютерных приложений (NCSA). Группа включала также ученых из

Университета г.Сент-Луис (США) и из исследовательского центра Konrad-Zuse-Zentrum в Берлине. Этот суперкомпьютер обеспечил первое детальное моделирование касательных столкновений черных дыр с неравными массами, а также их вращений, которые Бругман уже исследовал раньше. Вернер Бенгер (Werner Benger) из Konrad-Zuse-Zentrum даже сумел воспроизвести потрясающую картину процесса столкновения. Было продемонстрировано, как сливались "черные монстры" с массами от одной до нескольких сотен миллионов солнечных масс, создавая вспышки гравитационных волн, которые вскоре можно будет зафиксировать специальными средствами.

Одним из важнейших результатов этой исследовательской работы стало обнаружение огромной энергии, испускаемой при столкновении черных дыр в виде гравитационных волн. Если два объекта, с массами, эквивалентными 10 и 15 солнечных масс подходят к друг другу ближе, чем на 30 миль и сталкиваются, то величина гравитационной энергии соответствует 1% от их массы. "Это в тысячу раз больше, чем вся энергия выделенная нашим Солнцем в течении последних пяти миллиардов лет." - заметил Бругман. Поскольку большинство крупных столкновений во вселенной происходит очень далеко от земли, то сигналы в момент достижения ими земли должны становиться очень слабыми.

По всему миру началось сооружение нескольких высокоточных детекторов.

Один из них, сконструированный Институтом Макса Планка в рамках Германо-Британского проекта "Geo 600" представляет собой лазерный интерферометр длиной в 0,7 мили. Ученые надеются измерить параметры коротких гравитационных пертурбаций, происходящих при столкновениях черных дыр, однако они ожидают только одно такое столкновение в год, причем на расстоянии около 600 миллионов световых лет. Компьютерные модели необходимы, чтобы обеспечить наблюдателей надежной информацией об обнаружении волн, производимыми черными дырами. Благодаря совершенствованию возможностей моделирования на суперкомпьютерах, ученые стоят на пороге появления нового типа экспериментальной физики.

Астрономы говорят, что они знают местоположение многих тысяч черных дыр, но мы не в состоянии проделывать с ними какие-либо эксперименты на земле. "Только в одном случае мы сможем изучить детали и сконструировать их численную модель в наших компьютерах и наблюдать за ней," - объяснил профессор Бернард Шутц, директор института Альберта Эйнштейна. "Я полагаю, что изучение черных дыр будет ключевой темой для исследований астрономов в первой декаде следующего столетия."

Звезда-спутник позволяет увидеть пыль от суперновой звезды.

Черные дыры не могут быть замечены непосредственно, но астрономы могут видеть доказательство их существования, когда газы извергаются на звезду- спутник.

Если взорвать динамит, то крошечные осколки взрывчатого вещества глубоко вонзятся в ближайшие объекты, таким образом оставляя несмываемый доказательство произошедшего взрыва.

Астрономы нашли подобный отпечаток на звезде, которая движется по орбите вокруг чёрной дыры, небезосновательно полагая, чтобы данная чёрная дыра - бывшая звезда, которая разрушилась настолько сильно, что даже свет не может преодолеть её силу гравитации, - возникла в результате взрыва сверхновой звезды.

Свет во тьме.

К этому времени, астрономы наблюдали взрывы сверхновых звёзд и обнаружили на их месте пятнистые объекты, которые, по их мнению, и являются чёрными дырами. Новое открытие - первое реальное доказательство связи между одним событием и другим. (Чёрные дыры нельзя непосредственно увидеть, но о их присутствии иногда можно судить по действию их гравитационного поля на ближайшие объекты.

Система "звезда-и-чёрная дыра", обозначенная как GRO J1655-40, находится приблизительно на удалении в 10,000 световых лет в пределах нашей галактики Млечного пути. Обнаруженная в 1994 году, она привлекла внимание астрономов сильными вспышками рентгеновских лучей и обстрелом радиоволн, поскольку чёрная дыра выталкивала газы на звезду-спутник, находящуюся на расстоянии 7.4 миллионов миль.

Исследователи из Испании и Америки начали внимательно присматриваться к звезде-спутнику, полагая, что она могла сохранить какой-либо след, свидетельствующий о процессе формирования чёрной дыры.

Считается, что черные дыры, размером со звезду, являются телами больших звёзд, которые просто уменьшились до таких размеров после того, как израсходовали всё своё водородное топливо. Но по непонятным пока причинам, затухающая звезда трансформируется в сверхновую прежде, чем взорваться.

Наблюдения системы GRO J1655-40 в августе и сентябре 1994 года позволили зафиксировать, что потоки выбрасываемого газа имели скорость, составляющую до 92 % от скорости света, что частично доказывало наличие там чёрной дыры.

Звёздная пыль.

Если учёные не ошибаются, то часть взорвавшихся звезд, которые, вероятно, в 25-40 раз больше, чем наше Солнце, превратилась в выжившие спутники.

Это именно те данные, которые астрономы обнаружили.

Атмосфера звезды-спутника содержала более высокую, чем обычно, концентрацию кислорода, магния, кремния и серы - тяжелые элементы, которые могут быть созданы в большом количестве только при температуре в мультимиллиард градусов, которая достигается во время взрыва суперновой звезды. Это и явилось первым доказательством, действительно подтверждающим справедливость теории о том, что некоторые чёрные дыры вначале возникли как сверхновые звёзды, поскольку увиденное не могло быть рождено звездой, которую наблюдали астрономы.

Черная дыра– область пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Для находящихся там тел вторая космическая скорость (скорость убегания) должна была бы превышать скорость света, что невозможно, поскольку ни вещество, ни излучение не могут двигаться быстрее света. Поэтому из черной дыры ничто не может вылететь. Границу области, за которую не выходит свет, называют "горизонтом событий", или просто "горизонтом" черной дыры.

Сущность гипотезы образования черных дыр заключается в следующем: если некоторая масса вещества оказывается в сравнительно небольшом объеме, критическом для нее, то под действием сил собственного тяготения такое вещество начинает неудержимо сжиматься. Наступает своеобразная гравитационная катастрофа - гравитационный коллапс. В результате сжатия растет концентрация вещества. Наконец, наступает момент, когда сила тяготения на ее поверхности становится столь велика, что для ее преодоления надо развить скорость, превосходящую скорость света. Такие скорости практически недостижимы, и из замкнутого пространства черной дыры не могут вырваться ни лучи света, ни частицы материи. Излучение черной дыры оказывается "запертым" гравитацией. Черные дыры способны только поглощать излучение

Чтобы поле тяготения смогло "запереть" излучение, создающая это поле, масса (M) должна сжаться до объема с радиусом, меньшим "гравитационного радиуса" r g = 2GM/c 2 . По этой причине создать и исследовать черную дыру в лаборатории практически невозможно: чтобы тело любой разумной массы (даже в миллионы тонн) стало черной дырой, его нужно сжать до размера, меньшего, чем размер протона или нейтрона, поэтому свойства черных дыр пока изучаются только теоретически.

Однако расчеты показывают, что тела астрономического масштаба (например, массивные звезды) после истощения в них термоядерного топлива могут под действием собственного тяготения сжиматься до размера своего гравитационного радиуса. Поиск таких объектов ведется уже более 40 лет, и сейчас можно с большой уверенностью указать несколько весьма вероятных кандидатов в черные дыры с массами от единиц до миллиардов масс Солнца. Однако их изучение затруднено огромными расстояниями от Земли. И хотя сам факт существования черных дыр уже трудно подвергать сомнению, практическое изучение их свойств еще впереди.

1. История идеи о черных дырах.

Английский геофизик и астроном Джон Мичелл предположил, что в природе могут существовать столь массивные звезды, что даже луч света не способен покинуть их поверхность. Используя законы Ньютона, Мичелл рассчитал, что если бы звезда с массой Солнца имела радиус не более 3 км, то даже частицы света (которые он, вслед за Ньютоном, считал корпускулами) не могли бы улететь далеко от такой звезды. Поэтому такая звезда казалась бы издалека абсолютно темной. Эту идею Мичелл представил на заседании Лондонского Королевского общества 27 ноября 1783. Так родилась концепция "ньютоновской" черной дыры.

Такую же идею высказал в своей книге Система мира (1796) французский математик и астроном Пьер Симон Лаплас. Простой расчет позволил ему написать: "Светящаяся звезда с плотностью, равной плотности Земли, и диаметром, в 250 раз большим диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми". Однако масса такой звезды должна была бы в десятки миллионов раз превосходить солнечную. А поскольку дальнейшие астрономические измерения показали, что массы реальных звезд не очень сильно отличаются от солнечной, идея Митчела и Лапласа о черных дырах была забыта.

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX - начале XX века было установлено, что сформулированные Дж.Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г.Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А.Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А.Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световыми скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО).

Во второй раз ученые "столкнулись" с черными дырами в 1916, когда немецкий астроном Карл Шварцшильд получил первое точное решение уравнений ОТО. Оказалось, что пустое пространство вокруг массивной точки обладает особенностью на расстоянии r g от нее; именно поэтому величину r g часто называют "шварцшильдовским радиусом", а соответствующую поверхность (горизонт событий) – шварцшильдовской поверхностью. В следующие полвека усилиями теоретиков были выяснены многие удивительные особенности решения Шварцшильда, но как реальный объект исследования черные дыры еще не рассматривались.

Правда, в 1930-е, после создания квантовой механики и открытия нейтрона, физики исследовали возможность формирования компактных объектов (белых карликов и нейтронных звезд)как продуктов эволюции нормальных звезд. Оценки показали, что после истощения в недрах звезды ядерного топлива, ее ядро может сжаться превратиться в маленький и очень плотный белый карлик или же в еще более плотную и совсем крохотную нейтронную звезду.

В 1934 работавшие в США европейские астрономы Фриц Цвикки и Вальтер Бааде выдвинули гипотезу – вспышки сверхновых представляют собой совершенно особый тип звездных взрывов, вызванных катастрофическим сжатием ядра звезды. Так впервые родилась идея о возможности наблюдать коллапс звезды. Бааде и Цвикки высказали предположение, что в результате взрыва сверхновой образуется сверхплотная вырожденная звезда, состоящая из нейтронов. Расчеты показали, что такие объекты действительно могут рождаться и быть устойчивыми, но лишь при умеренной начальной массе звезды. Но если масса звезды превышает три массы Солнца, то уже ничто не сможет остановить ее катастрофического коллапса.

В 1939 американские физики Роберт Оппенгеймер и Хартланд Снайдер обосновали вывод, что ядро массивной звезды должно безостановочно коллапсировать в предельно малый объект, свойства пространства вокруг которого (если он не вращается) описываются решением Шварцшильда. Иными словами, ядро массивной звезды в конце ее эволюции должно стремительно сжиматься и уходить под горизонт событий, становясь черной дырой. Но поскольку такой объект (как говорили тогда, "коллапсар", или "застывшая звезда") не излучает электромагнитные волны, то астрономы понимали, что обнаружить его в космосе будет невероятно трудно и поэтому долго не приступали к поиску.

Поскольку никакой носитель информации не способен выйти из-под горизонта событий, внутренняя часть черной дыры причинно не связана с остальной Вселенной, происходящие внутри черной дыры физические процессы не могут влиять на процессы вне ее. В то же время, вещество и излучение, падающие снаружи на черную дыру, свободно проникают внутрь через горизонт. Можно сказать, что черная дыра все поглощает и ничего не выпускает. По этой причине и родился термин "черная дыра", предложенный в 1967 американским физиком Джоном Арчибальдом Уилером.

2. Формирование черных дыр

Самый очевидный путь образования черной дыры – коллапс ядра массивной звезды. Пока в недрах звезды не истощился запас ядерного топлива, ее равновесие поддерживается за счет термоядерных реакций (превращение водорода в гелий, затем в углерод, и т.д., вплоть до железа у наиболее массивных звезд). Выделяющееся при этом тепло компенсирует потерю энергии, уходящей от звезды с ее излучением и звездным ветром. Термоядерные реакции поддерживают высокое давление в недрах звезды, препятствуя ее сжатию под действием собственной гравитации. Однако со временем ядерное топливо истощается и звезда начинает сжиматься.

Наиболее быстро сжимается ядро звезды, при этом оно сильно разогревается (его гравитационная энергия переходит в тепло) и нагревает окружающую его оболочку. В итоге звезда теряет свои наружные слои в виде медленно расширяющейся планетарной туманности или катастрофически сброшенной оболочки сверхновой. А судьба сжимающегося ядра зависит от его массы. Расчеты показывают, что если масса ядра звезды не превосходит трех масс Солнца, то она "выигрывает битву с гравитацией": его сжатие будет остановлено давлением вырожденного вещества, и звезда превратится в белый карлик или нейтронную звезду. Но если масса ядра звезды более трех солнечных, то уже ничто не сможет остановить его катастрофический коллапс, и оно быстро уйдет под горизонт событий, став черной дырой. Как следует из формулы для r g , черная дыра с массой 3 солнечных имеет гравитационный радиус 8,8 км.

Астрономические наблюдения хорошо согласуются с этими расчетами: все компоненты двойных звездных систем, проявляющие свойства черных дыр (в 2005 их известно около 20), имеют массы от 4 до 16 масс Солнца. Теория звездной эволюции указывает, что за 12 млрд. лет существования нашей Галактики, содержащей порядка 100 млрд. звезд, в результате коллапса наиболее массивных из них должно было образоваться несколько десятков миллионов черных дыр. К тому же, черные дыры очень большой массы (от миллионов до миллиардов масс Солнца)могут находиться в ядрах крупных галактик, в том числе, и нашей. Об этом свидетельствуют астрономические наблюдения, хотя пути формирования этих гигантских черных дыр не вполне ясны.

Если в нашу эпоху высокая плотность вещества, необходимая для рождения черной дыры, может возникнуть лишь в сжимающихся ядрах массивных звезд, то в далеком прошлом, сразу после Большого взрыва, с которого около 14 млрд. лет назад началось расширение Вселенной, высокая плотность материи была повсюду. Поэтому небольшие флуктуации плотности в ту эпоху могли приводить к рождению черных дыр любой массы, в том числе и малой. Но самые маленькие из них в силу квантовых эффектов должны были испариться, потеряв свою массу в виде излучения и потоков частиц. "Первичные черные дыры" с массой более 10 12 кг могли сохраниться до наших дней. Самые мелкие из них, массой 10 12 кг (как у небольшого астероида), должны иметь размер порядка 10 –15 м (как у протона или нейтрона).

Наконец, существует гипотетическая возможность рождения микроскопических черных дыр при взаимных соударениях быстрых элементарных частиц. Таков один из прогнозов теории струн – одной из конкурирующих сейчас физических теорий строения материи. Теория струн предсказывает, что пространство имеет более трех измерений. Гравитация, в отличие от прочих сил, должна распространяться по всем этим измерениям и поэтому существенно усиливаться на коротких расстояниях. При мощном столкновении двух частиц (например, протонов) они могут сжаться достаточно сильно, чтобы родилась микроскопическая черная дыра. После этого она почти мгновенно разрушится ("испарится"), но наблюдение за этим процессом представляет для физики большой интерес, поскольку, испаряясь, дыра будет испускать все существующие в природе виды частиц. Если гипотеза теории струн верна, то рождение таких черных дыр может происходить при столкновениях энергичных частиц космических лучей с атомами земной атмосферы, а также в наиболее мощных ускорителях элементарных частиц.

3. Свойства черных дыр

Вблизи черной дыры напряженность гравитационного поля так велика, что физические процессы там можно описывать только с помощью релятивистской теории тяготения. Согласно ОТО, пространство и время искривляются гравитационным полем массивных тел, причем наибольшее искривление происходит вблизи черных дыр. Когда физики говорят об интервалах времени и пространства, они имеют в виду числа, считанные с каких-либо физических часов и линеек. Например, роль часов может играть молекула с определенной частотой колебаний, количество которых между двумя событиями можно называть "интервалом времени".

Важно, что гравитация действует на все физические системы одинаково: все часы показывают, что время замедляется, а все линейки, что пространство растягивается вблизи черной дыры. Это означает, что черная дыра искривляет вокруг себя геометрию пространства и времени. Вдали от черной дыры это искривление мало, а вблизи так велико, что лучи света могут двигаться вокруг нее по окружности. Вдали от черной дыры ее поле тяготения в точности описывается теорией Ньютона для тела такой же массы, но вблизи гравитация становится значительно сильнее, чем предсказывает ньютонова теория.

Если бы можно было наблюдать в телескоп за звездой в момент ее превращения в черную дыру, то сначала было бы видно, как звезда все быстрее и быстрее сжимается, но по мере приближения ее поверхности к гравитационному радиусу сжатие начнет замедляться, пока не остановится совсем. При этом приходящий от звезды свет будет слабеть и краснеть пока окончательно не потухнет. Это происходит потому, что, преодолевая силу тяжести, фотоны теряют энергию и им требуется все больше времени, чтобы дойти до нас. Когда поверхность звезды достигнет гравитационного радиуса, покинувшему ее свету потребуется бесконечное время, чтобы достичь любого наблюдателя, даже расположенного сравнительно близко к звезде (и при этом фотоны полностью потеряют свою энергию). Следовательно, мы никогда не дождемся этого момента и, тем более, не увидим того, что происходит со звездой под горизонтом событий, но теоретически этот процесс исследовать можно.

Расчет идеализированного сферического коллапса показывает, что за короткое время вещество под горизонтом событий сжимается в точку, где достигаются бесконечно большие значения плотности и тяготения. Такую точку называют "сингулярностью". Более того, математический анализ показывает, что если возник горизонт событий, то даже несферический коллапс приводит к сингулярности. Однако, все это верно лишь в том случае, если общая теория относительности применима вплоть до очень малых пространственных масштабов, в чем пока нет уверенности. В микромире действуют квантовые законы, а квантовая теория гравитации еще не создана. Ясно, что квантовые эффекты не могут остановить сжатие звезды в черную дыру, а вот предотвратить появление сингулярности они могли бы.

Изучая фундаментальные свойства материи и пространства-времени, физики считают исследование черных дыр одним из важнейших направлений, поскольку вблизи черных дыр проявляются скрытые свойства гравитации. Для поведения вещества и излучения в слабых гравитационных полях различные теории тяготения дают почти неразличимые прогнозы, однако в сильных полях, характерных для черных дыр, предсказания различных теорий существенно расходятся, что дает ключ к выявлению лучшей среди них. В рамках наиболее популярной сейчас теории гравитации – ОТО Эйнштейна – свойства черных дыр изучены весьма подробно. Вот некоторые важнейшие из них:

1) Вблизи черной дыры время течет медленнее, чем вдали от нее. Если удаленный наблюдатель бросит в сторону черной дыры зажженный фонарь, то увидит, как фонарь будет падать все быстрее и быстрее, но затем, приближаясь к поверхности Шварцшильда, начнет замедляться, а его свет будет тускнеть и краснеть (поскольку замедлится темп колебания всех его атомов и молекул). С точки зрения далекого наблюдателя фонарь практически остановится и станет невидим, так и не сумев пересечь поверхность черной дыры. Но если бы наблюдатель сам прыгнул туда вместе с фонарем, то он за короткое время пересек бы поверхность Шварцшильда и упал к центру черной дыры, будучи при этом разорван ее мощными приливными гравитационными силами, возникающими из-за разницы притяжения на разных расстояниях от центра.

2) Каким бы сложным ни было исходное тело, после его сжатия в черную дыру внешний наблюдатель может определить только три его параметра: полную массу, момент импульса (связанный с вращением) и электрический заряд. Все остальные особенности тела (форма, распределение плотности, химический состав и т.д.)в ходе коллапса "стираются". То, что для стороннего наблюдателя структура черной дыры выглядит чрезвычайно простой, Джон Уилер выразил шутливым утверждением: "Черная дыра не имеет волос".

В процессе коллапса звезды в черную дыру за малую долю секунды (по часам удаленного наблюдателя) все ее внешние особенности, связанные с исходной неоднородностью, излучаются в виде гравитационных и электромагнитных волн. Образовавшаяся стационарная черная дыра "забывает" всю информацию об исходной звезде, кроме трех величин: полной массы, момента импульса (связанного с вращением) и электрического заряда. Изучая черную дыру, уже невозможно узнать, состояла ли исходная звезда из вещества или антивещества, была ли она вытянутой или сплюснутой и т.п. В реальных астрофизических условиях заряженная черная дыра будет притягивать к себе из межзвездной среды частицы противоположного знака, и ее заряд быстро станет нулевым. Оставшийся стационарный объект либо будет невращающейся "шварцшильдовой черной дырой", которая характеризуется только массой, либо вращающейся "керровской черной дырой", которая характеризуется массой и моментом импульса.

3) Если исходное тело вращалось, то вокруг черной дыры сохраняется "вихревое" гравитационное поле, увлекающее все соседние тела во вращательное движение вокруг нее. Поле тяготения вращающейся черной дыры называют полем Керра (математик Рой Керр в 1963 нашел решение соответствующих уравнений). Этот эффект характерен не только для черной дыры, но для любого вращающегося тела, даже для Земли. По этой причине размещенный на искусственном спутнике Земли свободно вращающийся гироскоп испытывает медленную прецессию относительно далеких звезд. Вблизи Земли этот эффект едва заметен, но вблизи черной дыры он выражен гораздо сильнее: по скорости прецессии гироскопа можно измерить момент импульса черной дыры, хотя сама она не видна.

Чем ближе мы подходим к горизонту черной дыры, тем сильнее становится эффект увлечения "вихревым полем". Прежде чем достичь горизонта, мы окажемся на поверхности, где увлечение становится настолько сильным, что ни один наблюдатель не может оставаться неподвижным (т. е. быть "статическим") относительно далеких звезд. На этой поверхности (называемой пределом статичности) и внутри нее все объекты должны двигаться по орбите вокруг черной дыры в том же направлении, в котором вращается сама дыра. Независимо от того, какую мощность развивают его реактивные двигатели, наблюдатель внутри предела статичности никогда не сможет остановить свое вращательное движение относительно далеких звезд.

Предел статичности всюду лежит вне горизонта и соприкасается с ним лишь в двух точках, там, где они оба пересекаются с осью вращения черной дыры. Область пространства-времени, расположенная между горизонтом и пределом статичности, называется эргосферой. Объект, попавший в эргосферу, еще может вырваться наружу. Поэтому, хотя черная дыра "все съедает и ничего не отпускает", тем не менее, возможен обмен энергией между ней и внешним пространством. Например, пролетающие через эргосферу частицы или кванты могут уносить энергию ее вращения.

4) Все вещество внутри горизонта событий черной дыры непременно падает к ее центру и образует сингулярность с бесконечно большой плотностью. Английский физик Стивен Хоукинг определяет сингулярность как "место, где разрушается классическая концепция пространства и времени так же, как и все известные законы физики, поскольку все они формулируются на основе классического пространства-времени".

5) Кроме этого С.Хоукинг открыл возможность очень медленного самопроизвольного квантового "испарения" черных дыр. В 1974 он доказал, что черные дыры (не только вращающиеся, но любые) могут испускать вещество и излучение, однако заметно это будет лишь в том случае, если масса самой дыры относительно невелика. Мощное гравитационное поле вблизи черной дыры должно рождать пары частица-античастица. Одна из частиц каждой пары поглощается дырой, а вторая испускается наружу. Например, черная дыра с массой 10 12 кг должна вести себя как тело с температурой 10 11 К, излучающее очень жесткие гамма-кванты и частицы. Идея об "испарении" черных дыр полностью противоречит классическому представлению о них как о телах, не способных излучать.

4. Поиски черных дыр

Расчеты в рамках ОТО указывают лишь на возможность существования черных дыр, но отнюдь не доказывают их наличия в реальном мире, открытие черной дыры стало бы важным шагом в развитии физики. Поиск изолированных черных дыр в космосе невероятно труден: требуется заметить маленький темный объект на фоне космической черноты. Но есть надежда обнаружить черную дыру по ее взаимодействию с окружающими астрономическими телами, по ее характерному влиянию на них.

Учитывая важнейшие свойства черных дыр (массивность, компактность и невидимость) астрономы постепенно выработали стратегию их поиска. Проще всего обнаружить черную дыру по ее гравитационному взаимодействию с окружающим веществом, например, с близкими звездами. Попытки обнаружить невидимые массивные спутники в двойных звездах не увенчались успехом. Но после запуска на орбиту рентгеновских телескопов выяснилось, что черные дыры активно проявляют себя в тесных двойных системах, где они отбирают вещество у соседней звезды и поглощают его, нагревая при этом до температуры в миллионы градусов и делая его на короткое время источником рентгеновского излучения.

Поскольку в двойной системе черная дыра в паре с нормальной звездой обращается вокруг общего центра массы, используя эффект Доплера, удается измерить скорость звезды и определить массу ее невидимого компаньона. Астрономы выявили уже несколько десятков двойных систем, где масса невидимого компаньона превосходит 3 массы Солнца и заметны характерные проявления активности вещества, движущегося вокруг компактного объекта, например, очень быстрые колебания яркости потоков горячего газа, стремительно вращающегося вокруг невидимого тела.

Особенно перспективной считают рентгеновскую двойную звезду V404 Лебедя, масса невидимого компонента которой оценивается не менее, чем в 6 масс Солнца. Другие кандидаты в черные дыры находятся в двойных системах Лебедь X-1, LMC X-3, V616 Единорога, QZ Лисички, а также в рентгеновских новых Змееносец 1977, Муха 1981 и Скорпион 1994. Почти все они расположены в пределах нашей Галактики, а система LMC X-3 – в близкой к нам галактике Большое Магелланово Облако.

Другим направлением поиска черных дыр служит изучение ядер галактик. В них скапливаются и уплотняются огромные массы вещества, сталкиваются и сливаются звезды, поэтому там могут формироваться сверхмассивные черные дыры, превосходящие по массе Солнце в миллионы раз. Они притягивают к себе окружающие звезды, создавая в центре галактики пик яркости. Они разрушают близко подлетающие к ним звезды, вещество которых образует вокруг черной дыры аккреционный диск и частично выбрасывается вдоль оси диска в виде быстрых струй и потоков частиц. Это не умозрительная теория, а процессы, реально наблюдаемые в ядрах некоторых галактик и указывающие на присутствие в них черных дыр с массами до нескольких миллиардов масс Солнца. В последнее время получены весьма убедительные доказательства того, что и в центре нашей Галактики есть черная дыра с массой около 2,5 млн масс Солнца.

Вполне вероятно, что самые мощные процессы энерговыделения во Вселенной происходят с участием черных дыр. Именно их считают источником активности в ядрах квазаров – молодых массивных галактик. Именно их рождение, как полагают астрофизики, знаменуется самыми мощными взрывами во Вселенной, проявляющимися как гамма-всплески.

5. Термодинамика и испарение чёрных дыр

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С.Хокингом в 1975 году. Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино, а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения для безмассовых полей оказался строго совпадающим с излучением абсолютно чёрного тела, что позволило приписать чёрной дыре температуру

,

где - редуцированная постоянная Планка, c - скорость света, k - постоянная Больцмана, G - гравитационная постоянная, M - масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:


где A - площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

.

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми). Согласно некоторым теориям, после испарения должен оставаться "огарок" - минимальная планковская чёрная дыра.

6. Падение в чёрную дыру

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил гравитации, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих - в тангенциальном. Величина этих сил растёт и стремится к бесконечности при . В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны, идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее гравитационного замедления времени): часы, закреплённые на радиальной координате r без вращения (), будут идти медленнее бесконечно удалённых в раз. Будет казаться, что тело - в чрезвычайно сплющенном виде - будет замедляться, приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом. Кроме того, расстояние между телом и горизонтом событий, а также "толщина" сплющенного (с точки зрения стороннего наблюдателя) тела довольно быстро достигнут планковской длины и (с математической точки зрения) будут уменьшаться и далее. Для реального физического наблюдателя (ведущего измерения с планковской погрешностью) это равносильно тому, что масса чёрной дыры увеличится на массу падающего тела, а значит радиус горизонта событий возрастёт и падающее тело окажется "внутри" горизонта событий за конечное время.

Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса. Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и в результате удалённый наблюдатель увидит, что звезда погасла.

7. Виды черных дыр

А) Сверхмассивные чёрные дыры

Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей галактики - Стрелец A*.

В настоящее время существование чёрных дыр звёздных и галактических масштабов считается большинством учёных надёжно доказанным астрономическими наблюдениями.

Американские астрономы установили, что массы сверхмассивных чёрных дыр могут быть значительно недооценены. Исследователи установили, что для того, чтобы звёзды двигались в галактике М87 (которая расположена на расстоянии 50 миллионов световых лет от Земли) так, как это наблюдается сейчас, масса центральной чёрной дыры должна быть как минимум 6,4 миллиарда солнечных масс, то есть в два раза больше нынешних оценок ядра М87, которые составляют 3 млрд солнечных масс.

Б) Первичные чёрные дыры

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе - их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

В)Квантовые чёрные дыры

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображенийвесьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра - планковская чёрная дыра. Её масса порядка 10 −5 г, радиус - 10 −35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Заключение

Таким образом, все "элементарные объекты" можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин - планкеон.

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 10 26 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Список литературы

1. Карпенков С.Х. Концепции современного естествознания, М, Высш. школа 2003г.

2. http://nrc.edu.ru/est/pos/24.html

3. http://www.krugosvet.ru/enc/nauka_i_tehnika/astronomiya/CHERNAYA_DIRA.html